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• Data in Carbon Capture applications are expensive
• Time at test facilities difficult to obtain and requires waiting

• Sequential Design of Experiments:
– Allows us to be strategic about choosing what data are most beneficial
– Tailor data collection to the specific goals of each experiment (or stage of 

experiment)
– Leverage what we already know to take maximum advantage of new data

• SDoE module in FOQUS provides tools for experimenters to 
– Incorporate what is already known about a process
– Quickly generate a designed experiment to match their objectives

Why Design of Experiments in CCSI2?
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Want to make 
most of data that 
we are able to get



• New release of FOQUS SDoE module with new capabilities
– Space-Filling design

• Uniform Space-Filling (USF)
• Non-Uniform Space-Filling (NUSF)
• Input-Response Space-Filling (IRSF)

– Robust Optimality-Based design
• Leverages capabilities in UQ 
• Builds an empirical surrogate model
• Construct design using G-, I-,      D- or A-optimality

EY20 Highlights
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Focus: good prediction Focus: good estimation of model parameters

* New in EY20



Uniform Space-Filling Designs
• Inputs:

– Candidate set (specifies dimension of input space)
– Previous data (optional)
– Minimax or Maximin
– Size(s) of designs
– Number of random starts (time to generate design)

• Outputs
– Multiple designs with criteria values

Previously 
collected

data



Non-Uniform Space-Filling Designs
• Inputs:

– Candidate set (specifies dimension of input space)
– Previous data (optional)
– Size of design
– MWR - Maximum Weight Ratio (degree of non-uniformity)
– Direct or Ranked scaling of weights
– Number of random starts (time to generate design)

• Outputs
– Multiple designs with criteria values

Requires column for 
weights with value 
for each row
Flexible for different objectives



Input-Response Space-Filling Designs
• Inputs:

– Candidate set (specifies dimension of input space)
– Previous data (optional)
– Minimax or Maximin
– Size of design
– Number of random starts (time to generate design)

• Outputs
– Pareto front of objectively best designs to balance spacing in input and 

response spaces
– Details for each design – which runs and criteria values

Requires column for 
predicted response 
values



Pareto front



• Goal: construct ideal designs based on empirically fit models 
• Basic steps:

1. Select spreadsheet with columns of inputs and column(s) of responses
2. Identify type of each input: Variable – not controllable during experiment

Design – controllable during experiment
3. Specify details for each input (ranges, distribution shape, etc)
4. Specify candidate set and evaluation set (optional)
5. Fit an empirical model (different forms available) between inputs and response
6. Evaluate fit of model. When satisfied with fit, proceed.
7. Use model to generate a design. Choices:

• Optimality criterion: G-, I- (focus: prediction), 
D-, A- (focus: parameter estimation)

• Design size
• Number of Restarts

Robust Optimality-Based Design of Experiments (ODoE)
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How this work fits into CCSI2

Computer Experiments 
Physical Experiments – lab, pilot

Feasibility 
study

Exploration 
of Input 
Space

Model 
Building / 

Refinement
Optimization Confirmation

Uniform SF

Non-Uniform SF        
(to reduce 
uncertainty)

Robust Optimal 
Design (to improve 
parameter estimation 
or prediction)

Input-Response SF        
(to balance spread in 
input and response 
spaces)

Non-Uniform SF        
(to emphasize near 
optimum)



• There are still big strategic opportunities to pursue:
1. Our current tools focus on the individual experiment level, but there are powerful 

opportunities when we consider the big picture
• CCSI2 supports development of systems and models spanning basic science to 

deployment. This involves science sub-system models, overall system model – each 
with their own associated costs and utility

• When we consider multiple different experiments to achieve strategic goals for system 
performance, consider 

– what types of data should we be collecting?
– how much of each type? 
– what design within each type?

2. The CCSI2 approach is model-centric. Additional design of experiments tools can 
leverage knowledge from a mature mathematical / science model

Future R&D Plan and Challenges
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Space-Filling 
Designs

Empirical 
Model-
Based 

Designs

Immature / No Model Available Mature Model Available

Space-
Filling 

Designs

Scientific
Model-Based 

Designs Prop
os

ed



Thermo-
dynamic
s

Viscosity Surface 
Tension

MEA System 
at NCCCEngineering model 

of pilot system

Fundamental 
science models

Design for  multi-level 
“conglomerate” model Percentage CO2 capture Energy usage (Techno-

economic analysis)

Outputs / Inputs
(from sub) (for System)

Inputs Inputs 
(Temperature, 
CO2 loading, 
MEA wt fraction)

4 ”experiments” to 
collect data, each 
with different
- Costs
- Inputs / outputs
- Utility

Overall goal:
- Best prediction 
throughout the 
input space of 
NCCC system 
model

Scenarios to explore:
• Different levels of 

maturity of model
• Different available 

data

CO2 mol%
Solvent flow rate

Gas flow rate

System Inputs

Inputs 
(Temperature, 
CO2 loading, 
MEA wt fraction)



Main Idea: use full model equations directly to 
optimizing experimental campaigns to improve 
parameter estimates
+ Avoids need to build/validate surrogates
+ Discriminate between alternative mechanistic models
- Requires access to equations (e.g., Pyomo)

EY 2021 Progress (Sub-Task 2.1 & 3.1)
• Created MBDOE framework that works with any Pyomo model
• Demonstrated capability in DoE case study for fixed-bed MOF 

characterization

EY 2022 Proposed Work (Sub-Task 3.1)
• Release framework open source as Pyomo package
• Create plan to integrate MBDOE in FOQUS
• Algorithm improvements to increase speed & robustness

New Capability: Science Model-Based Design of Experiments
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D-optimality à

ß A-optimality

E-optimality à

Example: What is the optimal CO2 feed 
composition and feed temperature for next 
MOF fixed bed experiment?



Planned work for EY21-EY23• EY21
– Missing values / Imputation for NUSF and IRSF (LLNL)
– Videos and Documentation update for all capabilities (LANL & LLNL)
– Robust optimality-based DoE enhancement (LLNL)
– Science-based optimal design methodology development (ND)
– Design for Conglomerate model methodology development and demonstration 

(LANL)
– Collaboration with Pilot project teams – write up case study (LANL)

• EY22
– Integration of Science-based optimal design into toolset
– Integration of Design for Conglomerate model into toolset
– Collaboration with Pilot project teams – write up case study
– Update supporting materials (video, documentation)

• EY23
• Collaboration with Pilot project teams – write up case study



Proposed for Breakout Discussion
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• Breakout Discussion
• Design for Multi-level “conglomerate” models
• Design capability for Science-based models
• Description of planned supporting materials – documentation, videos
• Where do we anticipate design of experiments support being needed in the 
coming years?

• Pilot studies: RTI, MTR, TDA
• DOCCSS: PNNL CO2BOL, LBNL MOF  
• Other?

• Wishlist for other design capabilities

• Open Q&A
• ??



Acknowledgements

24

Co-Lead: Brenda Ng, LLNL

Team: 
Pedro Sotorrio (LLNL), 
Abby Nachtsheim (LANL), 
Miranda Martin (LANL), 
Alex Dowling (Notre Dame),  
Jialu Wong (Notre Dame), 
Josh Morgan (NETL),   
Charles Tong (LLNL)



For more information
https://www.acceleratecarboncapture.org/
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